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Abstract—Finding a “soft landing” on the moon is a classical
problem in Dynamic Optimization or Optimal Control. Here we
investigate a simple version of the soft moon landing problem
where the goal is to minimize the time it takes to land such that
a terminal amount of fuel is left in the rocket. Results are found
through Indirect and Direct shooting as well as LGR Collocation.
All results agree with a generally linear approach to the amount
of fuel burned per second.

I. INTRODUCTION

As Dr. Fuchs stated in class, optimal control was a crucial
part in the space race and landing on the moon. The amazing
men and women working on the project, especially the women
as shown in the recent hit movie “Hidden Figures”, made
landing on the moon possible. Landing on the moon is
therefore a classical problem in optimal control and was a
natural choice for a final project.

A couple other projects were considered with particular
effort put into optimal control of spiking neurons [1]. Due
to the author’s unfamiliarity with Physics and Mechanics in
general, it was preferred to work in an area that the author has
more experience in. Despite this, however, the moon landing
problem was chosen due the large amount of existing literature
and aiding resources.

Many versions of the problem can be considered - starting
from orbit [2], for a specific landing site [3], and the more
general problem [4], [5]. One note to make of these existing
seminal works is that thrust control often takes some kind of
linear form - whether it is a control that stays at 0 until a
certain point and then becomes linear, or is linear the entire
time. We find this to hold true in our simplified version of the
problem as well.

We use Indirect Backward shooting, Direct Forward shoot-
ing (with 2 control parameterizations), and LGR collocation
to solve the problem. All methods achieve similar results,
however, the indirect and collocation methods experienced
problems which we will discuss.
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II. PROBLEM DESCRIPTION

The problem chosen is described in problem 7.2 from
chosen problems from a course in optimal control at the
Royal Institute of Technology in Sweden [6]. This problem
is described as the following:

The state is defined as x = [x1(t), xt(2), x3(t)], where x1(t)
represents the height, x2(t) represents the velocity, and x3(t)
represents the mass of the rocket. The control is a single
variable, u(t), the rate of fuel burning. The dynamics are
described as:

ẋ1(t) = x2(t)

ẋ2(t) = −g −
k

x3(t)
u(t)

ẋ3(t) = u(t)

(1)

The boundary conditions are defined as:

x1(0) = x0

x2(0) = v0

x3(0) = m0

x1(tf ) = 0

x2(tf ) = 0

(2)

And the utility function is described simply as minimizing
time, or

∫ tf
0

1dt.
In the original problem, there is an additional inequality

such that u(t) ∈ [−M, 0], representing the maximum rate of
fuel burning, whether as a result of the rocket constraints, or
to prevent solutions that wait until the last second to burn
an impossible amount of fuel. This constraint was removed
and replaced with x3(tf ) = M , representing that the rocked
must have some amount of fuel at the end. This was done
as it was unknown how to handle this inequality constraint,
and additionally, requiring some amount of mass in the end is
realistic, so that the rocket may take off again.

This problem is extremely similar to that presented in
[5]. The initial conditions and constants were chosen as
v0 = −150, m0 = 2000, M = 500, k = 600, and g = 1.63,
which are within the range of typical values as described in
the referenced works.

III. ANALYTIC SOLUTION

The problem posed as an optimal control problem can be
broken down using calculus of variations and Pontryagin’s
minimum principle. Generalized optimality conditions can
be found with equations to satisfy for the Hamiltonian and
Costate variables. These topics will not be covered here.



The analytic solution work is attached in the appendix.
Unfortunately, no form for u(t) was found that could be
used. This is because all u(t) terms disappear when taking
the derivative of the Hamiltonian with respect to u(t). Ad-
ditionally, taking the derivative of the costate variables with
respect to the state results in equations that remove u(t). In
particular, we find that:

dH

du(t)
= 0 = −λ2(t)k

x3(t)
+ λ3(t)

λ̇1(t) = 0

λ̇2(t) = −λ1

λ̇3(t) = −
λ2(t)ku(t)

x23(t)

(3)

Using this set of information and the quotient rule:

λ3(t) =
λ2(t)k

x3(t)

λ̇3(t) =
x3(t)λ̇2(t)k − λ2(t)x3(t)k

x23(t)

λ̇3(t) = −
λ2(t)ku(t)

x23(t)

(4)

Resulting in:

x3(t)λ̇2(t)k − λ2(t)x3(t)k = −λ2(t)ku(t)
−x3(t)λ1(t) = 0

(5)

From this, we can conclude that λ1(t) is 0 as x3(t) cannot
be 0, and therefore that λ2(t) is constant. We do not, however,
have any information on what u(t) is. Oddly, we could define
u(t) as −x3(t)λ3(t)

k and put it in a few alternate forms from
this, however, using this control would result in insolvable
problems with the indirect solution.

Using the Hamiltonian at terminal and initial conditions did
not help solve the problem either.

It is unknown whether the problem is solvable and we
could not figure it out, or if the problem was accidentally
made unsolvable when adjusting the constraints. Regardless,
we were able to find convincing results through other methods.

IV. INDIRECT SOLUTION

An analytic solution or even form of u(t) could not be found
as discussed, however, interesting results were achieved when
using a purposefully incorrect form of u(t).

The optimality conditions in general were that λ1 was 0 at
all times including the boundaries, and that the other costate
variables had some values at both boundary conditions which
are included in the appendix.

When attempting to solve analytically, an incorrect form for
u(t) was found as:

u(t) =
−x3(t)λ1(t)− λ2(t)

λ2(t)
(6)

Again, this control formula is incorrect. Interestingly, how-
ever, it was found that using this formula yielded results that

would converge and made some sense. Figure 1 shows the
found solution with backwards shooting.

Figure 1 paints an interesting picture. With control that
is incorrect, a plausible solution was found. Even more
interestingly, the control found in this solution founds the
best solution, which is the first parameterization of the direct
solution.

What we conclude from this test is that a form of “direct”
shooting was essentially run, and we were lucky in finding a
converged solution. This control is incorrect, however, it gives
more credence to what was found in the next section, as the
shape and range of the control matches.

V. DIRECT SOLUTION

Given the results from the indirect shooting and the results
from cited works, an educated guess can be made about the
parameterization of the control. For the first parameterization,
a simple linear function is chosen, producing our best results.
For the second parameterization, an exponential function is
used as a guess, resulting in completely flat control, reinforcing
previous results. Backwards shooting was used in both cases.

A. Parameterization 1

As mentioned, the first chosen parameterization was a linear
function, such that u(t) = c1t+ c2. The problem was then to
solve for the values of c1 and c2. Results are shown in Figure
2.

As can be seen in Figure 2, all constraints are satisfied, and
the rocket lands at height 0 with velocity 0. The final time
comes to 418.2678 seconds.

B. Parameterization 2

To attempt to find alternate control for the problem, many
other parameterizations were attempted, including higher or-
der polynomials or sigmoid/heaviside functions to emulate a
“bang-bang” solution. None of these control schemes were
able to converge until we attempted a parameterized exponen-
tial function, which took the form of u(t) = c1e

tc2+c3 + c4.
The found solution is shown in Figure 3.

Figure 3 may be slightly confusing given that the control
was explicitly made to be exponential. Looking at the found
values for c, we found that c3 was set as a large negative
number, -3349320, and c4 was set as -4.0075, which is what
the control resulted in for all time. Essentially, the function
minimizer found that no exponential function was able to
model the control well and got rid of the exponential part
of the control entirely by putting it to the power of a large
negative number. With the exponential gone, the solver then
found a value for c4 that satisfied the constraints.

Despite the constraints being satisfied, the solution does not
work, as the rocket actually passes through height 0 before
reaching the solution (a minimum height of around -500 was
found). Of course, this is not possible.

While this parameterization did not find a usable solution,
it reinforced the solution that the first direct shooting param-
eterization found. The control was set within the same range



Fig. 1. Indirect Solution

Fig. 2. Direct Shooting Solution with Linear Control

Fig. 3. Direct Shooting Solution with Exponential Control

as the control in parameterization 1, hinting that some control
within that number range is optimal.

VI. LGR COLLOCATION

Collocation unfortunately experienced difficulties in con-
verging. Because the control is linear and collocation methods
must contain at least 2 points, it was not possible to perfectly
model control as done in the direct solution. We will therefore
present solutions found for 3 and 8 point LGR methods to
show that the general range of the direct control is correct.

Figure 4 shows the found solution with 3 LGR points, and
Figure 5 shows the found solution with 8 LGR points.

As can be seen in Figures 4 and 5, the collocation method
was unable to converge completely due to using a higher order
polynomial than required. At the same time, the methods came
quite close. While the solution was unable to be found, both
the 3- and 8-point solutions found a control that looks quite
similar to that found in the direct shooting. The direct shoot-
ing solution ranged from -5 to -2.5, which both collocation



Fig. 4. LGR 3-point Solution

Fig. 5. LGR 8-point Solution

methods come close to modeling.
With these results, we can conclude that the collocation

methods overparameterized the true solution, however, they
give further proof that the found solution in direct shooting is
the correct one.

VII. CONCLUSION

In this work we investigate the optimal control for a mini-
mum time, soft moon landing. While only one of our proposed
solutions converged, the other solutions converged to solutions
that nearly matched the proposed solution. With these failures,
we can see that the one success is indeed a true success and
optimally solves the problem. We also see evidence of similar
control schemes throughout seminal works, further justifying
that linear control optimally solves the problem.
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